# Component-Based Synthesis by Solving Language Equations

Tiziano Villa<sup>1</sup> joint work with Nina Yevtushenko<sup>2</sup>, Alex Petrenko<sup>3</sup>, Robert Brayton<sup>4</sup>, Alan Mishchenko<sup>4</sup>, A. Sangiovanni-Vincentelli<sup>4</sup>, and more ...

<sup>1</sup> Department of Computer Science, University of Verona, Italy
 <sup>2</sup> Department of Radiophysics, Tomsk State University, Russia
 <sup>3</sup> CRIM, Montreal, Canada
 <sup>4</sup> Department of EECS, UC Berkeley, USA

EPFL Workshop on Logic Synthesis and Verification, December 10-11, 2015

# Outline

### Introduction

- 2 Some previous work
- 3 Composition operators
  - Synchronous operators
  - Interleaving parallel operators
- 4 Equations over languages
- 5 BALM–II

### 6 Examples

- Example with finite automata
- Example with FSMs

### Conclusions

# The problem of synthesizing an unknown component

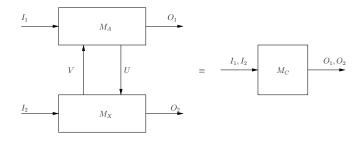
#### Problem: finding the unknown component

Design a component that combined with a known part of a system (called the **context** or **plant**) conforms to a given **specification**.

# The problem of synthesizing an unknown component

#### Problem: finding the unknown component

Design a component that combined with a known part of a system (called the **context** or **plant**) conforms to a given **specification**.



# How to formalize the problem

#### How to model the system and its components

Associate languages to systems and components: traces of events over alphabets of internal and external signals.

# How to formalize the problem

#### How to model the system and its components

Associate languages to systems and components: traces of events over alphabets of internal and external signals.

#### How to model composition

- Interleaving parallel composition (a.k.a.: parallel composition, synchronous parallel composition, asynchronous composition)
- Synchronous composition

# How to formalize the problem

#### How to model the system and its components

Associate languages to systems and components: traces of events over alphabets of internal and external signals.

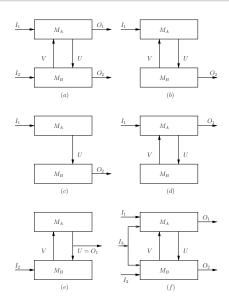
#### How to model composition

- Interleaving parallel composition (a.k.a.: parallel composition, synchronous parallel composition, asynchronous composition)
- Synchronous composition

#### How to model conformance

- Language containment
- Simulation/Bisimulation relation

# Composition topologies



- (a) General topology
- (b) 2-way cascade topology
- (c) 1-way cascade topology
- (d) Rectification topology
- (e) Supervisory control topology
- (f) Variant of general topology

## The unknown component problem

#### Problem: finding the unknown component

Design a component that combined with a known part of a system (called the **context** or **plant**) conforms to a given **specification**.

• • = • • = •

# The unknown component problem

#### Problem: finding the unknown component

Design a component that combined with a known part of a system (called the **context** or **plant**) conforms to a given **specification**.

#### Solution: solving an equation over languages

Reduce the problem to solving abstract equations over languages under synchronous and interleaving parallel composition.

- 1 Introduction
- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II
- 6 Examples
  - Example with finite automata
  - Example with FSMs

### **7** Conclusions

∃ →

# Sequential synthesis

#### Synthesis and resynthesis of a hardware component

- Kim-Newborn
- Yevtushenko et al.
- H.-Y. Wang-Brayton
- Watanabe-Brayton

∃ →

# Sequential synthesis

#### Synthesis and resynthesis of a hardware component

- Kim-Newborn
- Yevtushenko et al.
- H.-Y. Wang-Brayton
- Watanabe-Brayton

### WS1S

- Büchi
- Thatcher-Wright
- A. Aziz-Brayton et al.

∃ →

Some previous work

# Synthesis of discrete controllers

### Supervisory control

- Wonham-Ramadge
- Overkamp
- Kumar et al.

Some previous work

# Synthesis of discrete controllers

#### Supervisory control

- Wonham-Ramadge
- Overkamp
- Kumar et al.

#### Model matching of finite state machines

- Khatri-Brayton-Sangiovanni Vincentelli et al.
- Di Benedetto-Sangiovanni Vincentelli et al.
- Lafortune et al.

# Synthesis of automata and process algebras

#### Submodule specification for communication protocols

- Bochmann et al.
- Petrenko-Yevtushenko
- Haghverdi-Ural
- Drissi

# Synthesis of automata and process algebras

#### Submodule specification for communication protocols

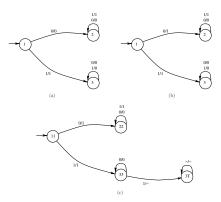
- Bochmann et al.
- Petrenko-Yevtushenko
- Haghverdi-Ural
- Drissi

#### Process algebra

- Qin-Lewis
- Negulescu

Some previous work

### Series topology: input don't care sequences



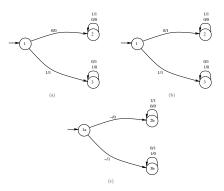
(a) Head FSM; (b) Tail FSM; (c) Flexibility at tail FSM Solved by Kim-Newborn

UNIVR

11 / 58

#### Some previous work

# Series topology: output don't care sequences



(a) Head FSM; (b) Tail FSM; (c) Flexibility at head FSM Solved by Yevtushenko

UNIVR

# WS1S and regular languages

- Weak Second-Order Logic of 1 Successor (WS1S) is a logic with the same expressive power as regular languages.
- It is possible to represent in WS1S any regular language *L* by encoding with a formula in WS1S the finite automaton *A* that recognizes the regular language *L*.

#### Theorem (Thatcher-Wright, 1968)

 $L \subseteq (\{0,1\}^k)^*$  is regular iff there exists a WS1S formula  $\phi$  with  $X_1, \ldots, X_k$  as free variables and  $\mathcal{L}(\phi) = L$ .

 The WS1S formalism allows to write down formulas that express the permissible behaviours at a node of a network of FSMs.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Some previous work

# Synthesis with WS1S

1-Way Cascade (a) - case (c)  $\phi^{M_A^*}(I_1, U) = (\forall O_2)[\phi^{M_B}(U, O_2) \to \phi^{M_C}(I_1, O_2)].$ The machine  $M_A^*$  is the one produced by the construction of Kim and Newborn. 1-Way Cascade (b) - case (c)  $\phi^{M_B^*}(U, O_2) = (\forall I_1)[\phi^{M_A}(I_1, U) \to \phi^{M_C}(I_1, O_2)].$ Supervisory Control - case (e)  $\phi^{M_B^*}(I_2, O_1, V) = \phi^{M_A}(V, O_1) \to \phi^{M_C}(I_2, O_1).$ 2-Way Cascade (a) - case (b)  $\phi^{M_A^*}(I_1, V, U) = (\forall O_2)[\phi^{M_B}(U, V, O_2) \rightarrow \phi^{M_C}(I_1, O_2)].$ 2-Way Cascade (b) - case (b)  $\phi^{M_B^*}(U, V, O_2) = (\forall I_1)[\phi^{M_A}(I_1, V, U) \to \phi^{M_C}(I_1, O_2)].$ Rectification (a) - case (d)  $\phi^{M_B^*}(U, V) = (\forall I_1, O_1)[\phi^{M_A}(I_1, V, U, O_1) \to \phi^{M_C}(I_1, O_1)].$ 

Rectification (b) - case (d)  $\phi^{M_A^*}(I_1, V, U, O_1) = \phi^{M_B}(U, V) \rightarrow \phi^{M_C}(I_1, O_1), \quad \text{for all } v \in \mathbb{C}$ 

UNIVR

Synthesis by Solving Language Equations

14 / 58

- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II
- 6 Examples
  - Example with finite automata
  - Example with FSMs

#### **7** Conclusions

Composition operators

# Synchronous and interleaving parallel composition

#### Synchronous composition

### Synchronous composition (•) corresponds to instantaneous

communication of systems.

Composition operators

# Synchronous and interleaving parallel composition

#### Synchronous composition

Synchronous composition  $(\bullet)$  corresponds to instantaneous communication of systems.

#### Interleaving parallel composition

**Interleaving parallel composition** ( $\diamond$ ) corresponds to asynchronous communication allowing arbitrary delay between communication events. A slow environment is assumed, i.e., no external input is applied to the composition until it produces an external output to the previous external input.

# Synchronous operators

#### Projection

Given a language L over alphabet  $X \times V$ , consider the homomorphism  $p: X \times V \rightarrow V^*$  defined as p((x, v)) = v, then the language

 $L_{\downarrow V} = \{p(\alpha) | \alpha \in L\}$ 

over alphabet V is the **projection** of language L to alphabet V, or V-projection of L. By definition of substitution  $p(\epsilon) = \epsilon$ . The projection of a language L over alphabet  $X \times V$  to the alphabet V is the set of words obtained from those in L by replacing the symbols (x, v) by their second component v.

▲圖▶ ▲圖▶ ▲圖▶

# Synchronous operators - 2

#### Lifting

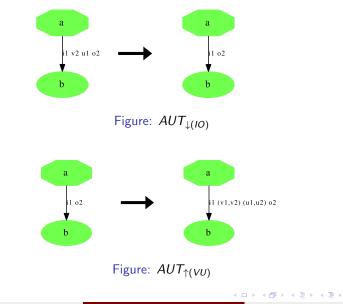
Given a language *L* over alphabet *X* and another alphabet *V*, consider the substitution  $I: X \to 2^{(X \times V)^*}$  defined as  $I(x) = \{(x, v) | v \in V\}$ , then the language

 $L_{\uparrow V} = \{ l(\alpha) | \alpha \in L \}$ 

over alphabet  $X \times V$  is the **lifting** of language *L* to alphabet *V*, or *V*-lifting of *L*. By definition of substitution  $I(\epsilon) = \{\epsilon\}$ . The lifting of language *L* over alphabet *X* to the alphabet *V* (*V* disjoint from *X*) is the set of words obtained from those in *L* by replacing the symbols  $x \in X$  by the pairs (x, v) for all  $v \in V$ .

Composition operators Synchronous operators

# Synchronous operators - 3



UNIVR

Synthesis by Solving Language Equations

19 / 58

э

# Synchronous language composition

#### Synchronous composition

Given alphabets I, U, O, language  $L_1$  over  $I \times U$  and language  $L_2$  over  $U \times O$ , the **synchronous composition** of languages  $L_1$  and  $L_2$  is the language defined over  $I \times O$ 

$$L_1 \bullet L_2 = [(L_1)_{\uparrow O} \cap (L_2)_{\uparrow I}]_{\downarrow I \times O}.$$

Given two systems A and B with associated languages L(A) and L(B) communicating internally by channel U and externally by channels I and O, their synchronous composition is defined by the operator of synchronous language composition.

### Interleaving parallel operators

#### Restriction

Given a language *L* over alphabet  $X \cup V$ , consider the homomorphism  $r : X \cup V \to V^*$  defined as  $r(y) = \begin{cases} y \text{ if } y \in V \\ \epsilon \text{ if } y \in X \setminus V \end{cases}$  then the language  $L_{IUV} = \{r(\alpha) | \alpha \in L\}$ 

over alphabet V is the **restriction** of language L to alphabet V, or V-restriction of L, i.e., words in  $L_{\downarrow V}$  are obtained from those in L by deleting all the symbols in X that are not in V. By definition of substitution  $r(\epsilon) = \epsilon$ .

The restriction of language L over alphabet  $X \cup V$  to the alphabet V is the set of words obtained from those in L by deleting the symbols in X that are not in V.

(人間) トイヨト イヨト

## Interleaving parallel operators - 2

#### Expansion

Given a language *L* over alphabet *X* and an alphabet *V* disjoint from *X*, consider the mapping  $e: X \to 2^{(X \cup V)^*}$  defined as  $e(x) = \{\alpha x \beta | \alpha, \beta \in (V \setminus X)^*\}$ , then the language

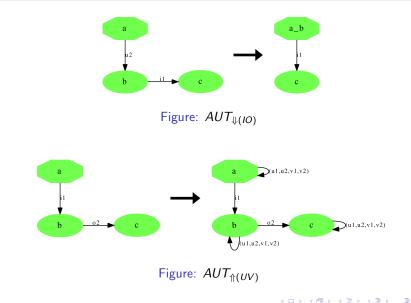
 $L_{\uparrow V} = \{ e(\alpha) | \alpha \in L \}$ 

over alphabet  $X \cup V$  is the **expansion** of language *L* to alphabet *V*, or *V*-expansion of *L*, i.e., words in  $L_{\uparrow V}$  are obtained from those in *L* by inserting anywhere in them words from  $(V \setminus X)^*$ . Notice that *e* is not a substitution and that  $e(\epsilon) = \{\alpha | \alpha \in (V \setminus X)^*\}$ . The expansion of language *L* over alphabet *X* to the alphabet *V* (V disjoint from X) is the set of words obtained from those in *L* by inserting anywhere in them any word from  $V^*$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



# Interleving parallel operators - 3



UNIVR

Synthesis by Solving Language Equations

23 / 58

### Interleaving parallel language composition

#### Interleaving parallel composition

Given alphabets I, U, O, language  $L_1$  over  $I \cup U$  and language  $L_2$  over  $U \cup O$ , the **interleaving parallel composition** of languages  $L_1$  and  $L_2$  is the language defined over  $I \cup O$ 

$$L_1 \diamond L_2 = [(L_1)_{\uparrow O} \cap (L_2)_{\uparrow I}]_{\Downarrow I \times O}.$$

Given two systems A and B with associated languages L(A) and L(B) communicating internally by channel U and externally by channels I and O, their interleaving parallel composition is defined by the operator of interleaving parallel language composition.



- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II
- 6 Examples
  - Example with finite automata
  - Example with FSMs

#### **7** Conclusions

Equations over languages

### Abstract composition operators

#### Abstract composition

Given the disjoint alphabets I, U, O, a language  $L_1$  over alphabet  $I \circ U$  and a language  $L_2$  over alphabet  $U \circ O$ , let the following symbols represent operators defined over alphabets and languages:

- • denotes an operator between alphabets;
- • denotes a **composition operator between languages**, defined as

$$L_1 \odot_{I \circ O} L_2 = [(L_1)_{\top O} \cap (L_2)_{\top I}]_{\perp I \circ O}$$

where  $\top$  and  $\bot$  denote language substitutions operators in suffix notation.

E.g.,  $\top$  is  $\uparrow$ ,  $\bot$  is  $\downarrow$ , and so  $\odot$  denotes the synchronous composition operator  $\bullet$ , and  $\circ$  denotes  $\times$  (or  $\top$  is  $\Uparrow$ ,  $\bot$  is  $\Downarrow$ , and so  $\odot$  denotes the parallel composition operator  $\diamond$  and  $\circ$  denotes  $\cup$ ).

UNIVR

Synthesis by Solving Language Equations

200

# Abstract equations over languages

#### Abstract equations

Given the disjoint alphabets I, U, O, a language A over alphabet  $I \circ U$  and a language C over alphabet  $I \circ O$ , we define the **language inequation** 

$$A_{I \circ U} \odot_{I \circ O} X_{U \circ O} \subseteq C_{I \circ O}, \text{ or } A \odot_{I \circ O} X \subseteq C,$$

and the language equation

$$A_{I \circ U} \odot_{I \circ O} X_{U \circ O} = C_{I \circ O}$$
, or  $A \odot_{I \circ O} X = C$ ,

with respect to the unkown language X over alphabet  $U \circ O$ .

Equations over languages

### Solutions of abstract equations over languages

#### Abstract equations

Given the disjoint alphabets I, U, O, a language A over alphabet  $I \circ U$  and a language C over alphabet  $I \circ O$ , language B over alphabet  $U \circ O$  is called a **solution** of the inequation  $A \odot_{I \circ O} X \subseteq C$  iff  $A \odot_{I \circ O} B \subseteq C$ . A solution is called the **largest solution** if it contains any other solution.

 $B = \emptyset$  is the trivial solution.

### Closed-form solution of abstract inequations over languages

#### Theorem

If the substitution operators  $\top$  and  $\bot$  are such that

- *H*1 : Given disjoint alphabets *Z*, *Y* and language *L* over *Z*,  $(L_{\top Y})_{\perp Z} = L$
- $\begin{array}{l} \textit{H2}: & \text{Given disjoint alphabets } Z, Y \text{ and languages } L_1, L_2 \\ & \text{over } Y \circ Z, \text{ if } L_1 = (L_{1 \perp Z})_{\top Y} \text{ or } L_2 = (L_{2 \perp Z})_{\top Y} \\ & \text{then } (L_1 \cap L_2)_{\perp Z} = L_1 \perp_Z \cap L_2 \perp_Z \end{array}$
- $\begin{array}{l} \textit{H3}: & \textit{Given disjoint alphabets } Z, Y \textit{ and language } L \textit{ over} \\ & Y \circ Z, \ L_{\perp Z} = \emptyset \Leftrightarrow L = \emptyset \end{array}$

then the **largest language solution** of the inequation  $A \odot X \subseteq C$  is \_\_\_\_\_

$$S = \overline{A \odot \overline{C}}.$$

S contains every language that is a solution (also the empty one). Any language contained in S is a solution of the language inequation. UNIVR Synthesis by Solving Language Equations 29 / 58

590

### Closed-form solution of abstract equations over languages

#### Corollary

If  $S \odot A \odot \overline{C} = C$ , then S is the largest solution of the language equation  $A \odot X = C$ . A subset of S may not be a solution of the language equation. If  $S \odot \overline{A \odot \overline{C}} \subset C$ , then the language equation is unsolvable and the language  $D = S \odot \overline{A \odot \overline{C}}$  is the largest subset of C such that the language equation  $A \odot X = D$  is solvable.

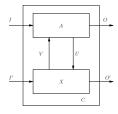
### Concrete equations over languages ( $\diamond$ composition)

Given the alphabets I, I', V, U, O, O', a language A over alphabet  $I \cup V \cup U \cup O$ , and a language C over alphabet  $I \cup I' \cup O \cup O'$ , consider the language inequality (equation)

$$A\diamond X\subseteq C$$
  $(A\diamond X=C)$ 

The language *B* over alphabet  $I' \cup U \cup V \cup O'$  is called a **solution** of the inequality (equation)  $A \diamond X \subseteq C$  ( $A \diamond X = C$ ) iff  $A \diamond B \subseteq C$  ( $A \diamond B = C$ ). The largest language solution is computed by

$$X=\overline{A\diamond \overline{C}}.$$



Synthesis by Solving Language Equations

### Specializing the solutions

#### Restricted solutions

One may restrict the solutions to those that satisfy a required property (prefix-closed, progressive, compositionally progressive etc.). Algorithms are available for regular languages.

### Specializing the solutions

#### Restricted solutions

One may restrict the solutions to those that satisfy a required property (prefix-closed, progressive, compositionally progressive etc.). Algorithms are available for regular languages.

#### **Optimal solutions**

One may extract a particular solution that optimizes a given cost function (e.g., the number of states of an automaton representing it, size of logical implementation etc.). It is mostly an open problem.

### Domains of application

This approach can be applied to many fields:

- conversion between mismatching protocols;
- supervisory control with full controllability and observability;
- testing modules of a discrete event system;
- design of winning stategies for logic games;
- logic circuit optimization;
- etc.

### How to solve effectively the language equations

#### Computing the closed-form solution

Automata are operational counterpars of languages. The closed-form largest solution can be computed if the operations appearing in it can be performed on the related automata. Special attention is required by the complementation operator.

### How to solve effectively the language equations

#### Computing the closed-form solution

Automata are operational counterpars of languages. The closed-form largest solution can be computed if the operations appearing in it can be performed on the related automata. Special attention is required by the complementation operator.

#### Classes of languages equations

Most of the work done refers to regular languages to which correspond finite automata and finite state machines. Language equations for special classes of Büchi automata and Petri nets have been studied too.

### Representations of regular languages

#### Finite automata

Finite automata are the most natural representation for regular languages.

- ×

### Representations of regular languages

#### Finite automata

Finite automata are the most natural representation for regular languages.

#### FSMs

Many problems derived from practical industrial applications are described as FSMs.

### Representations of regular languages

#### Finite automata

Finite automata are the most natural representation for regular languages.

#### FSMs

Many problems derived from practical industrial applications are described as FSMs.

#### Conversion FSM $\iff$ automaton

Using a specialized procedure it's possible to convert a FSM into an automaton and vice versa

A B A A B A

### Conversion FSM $\rightarrow$ automaton wrt parallel composition

For a language over  $I \cup O$ , the automaton is obtained from the original FSM, by replacing each edge (i, s, s', o) by the pair of edges (i, s, (s, i)) and (o, (s, i), s'), where (s, i) is a new node (non-accepting state). All original states are made accepting.

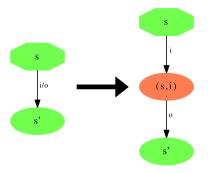


Figure: Transformation from FSM to automaton.

UNIVR

36 / 58

#### BALM-II

- Introduction
- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II

#### 6 Examples

- Example with finite automata
- Example with FSMs

#### **7** Conclusions

BALM-II

# Berkeley Automata and Language Manipulation (BALM)

#### BALM

BALM was developed at U.C. Berkeley as a branch of the MVSIS project at the *Center for Electronic System Design*, Brayton's group, main architect Alan Mishchenko.

#### Features of BALM

The BALM package aims at providing an experimental environment for efficient manipulation of finite automata in various application domains. With BALM it is possible to perform classic operations over automata and efficiently solve synchronous equations.

# Berkeley Automata and Language Manipulation (BALM)

#### Main features

The package can perform classical operations like minimization, complementation, determinization, product, etc. on automata described in .aut format.

#### Graphical representation

BALM can show results converting the .aut files into .ps using graphviz libraries. The initial states are represented with octagons, while the other states are elliptical. Colours are used to define the acceptance/non acceptance of a state, respectively green and red.

#### BALM

BALM–II is an extension of BALM developed at the University of Verona.

#### Features of BALM-II

BALM–II is able to solve also parallel equations. In order to solve them, some operators like expansion and restriction were introduced, together with the procedure to derive an automaton starting from a FSM, and to derive an FSM from an automaton solution.

# Some commands in BALM / BALM-II

complement product

expansion restriction

support
chan\_sync

```
read_para_fsm
write_para_fsm
```

In BALM-II there is a topological notion of channel that is a connection between terminals; we may associate one or more discrete variables to a given channel. To operate on automata, they must be defined over the same variables with the same order: this is achieved by using support and chan\_sync.

UNIVR

Synthesis by Solving Language Equations

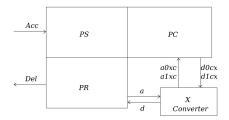
41 / 58

- Introduction
- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II
- 6 Examples
  - Example with finite automata
  - Example with FSMs

### 7 Conclusions

### Solution of an equation over finite automata

As an example we consider the problem, taken from Kumar et al. (DEDS, 1997), of designing a protocol converter to interface an *alternating-bit* (AB) sender and a *non-sequenced* (NS) receiver.



The component of the system are an AB protocol sender (PS), an AB protocol channel (PC) and a NS protocol receiver (PR).

Examples Example with finite automata

### Automata representation of the components

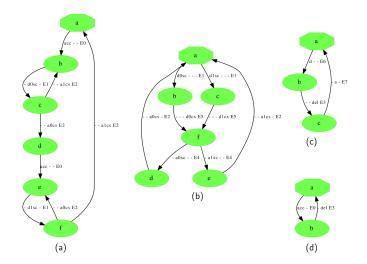
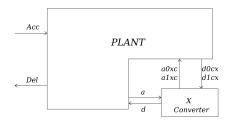


Figure: (a) AB sender; (b) AB channel; (c) NS receiver; (d) Specification.

44 / 58

### Solution of the example

In order to use the procedure described above, it is necessary first to compute the composition of the components that represent the plant.



The solution is found by computing the formula:

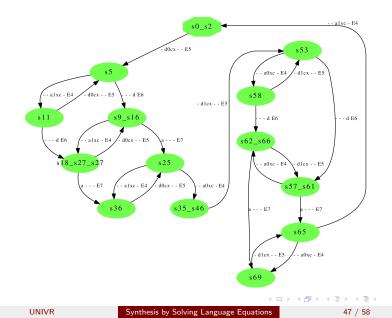
$$X = PS \diamond PC \diamond PR \diamond \overline{S}$$

### Solving procedure in BALM-II

complement spec.aut spec\_comp.aut expansion E4,E5,E6,E7 spec\_comp.aut spec\_comp\_exp.aut product fixed.aut spec\_comp\_exp.aut product.aut support I,O,AX,DX,D,A,E(8) product.aut product\_supp.aut restriction E4,E5,E6,E7 product\_supp.aut product\_res.aut support A,DX,AX,D,E(8) product\_res.aut product\_supp.aut complement product\_supp.aut x.aut

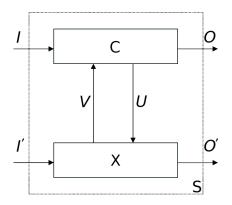
Examples Example with finite automata

### Graphical representation of the largest automaton solution

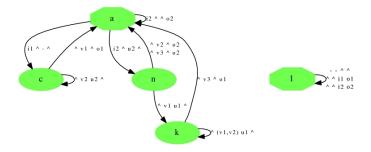


### Solution of an equation over FSMs

As a second example we consider a problem over FSMs taken from El-Fakih et al. (TCS, 2006). This is the topology:

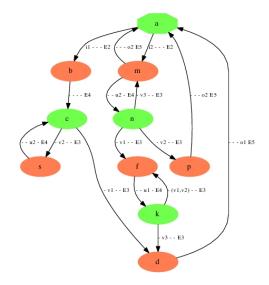


### Plant and specification as FSMs



#### Figure: Plant FSM (left) and specification FSM (right)

### Automaton representing the FSM language of the plant

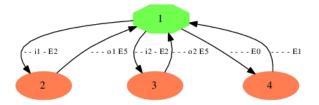


UNIVR

Synthesis by Solving Language Equations

50 / 58

### Automaton representing the FSM language of the spec.



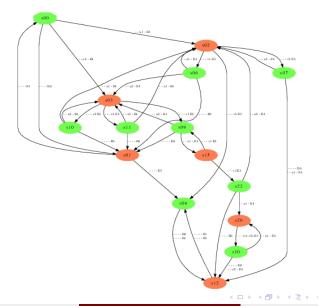
Notice that the specification has input variables  $I = \{i1, i2\}$ ,  $X = \{x\}$  and output variables  $O = \{o1, o2\}$ ,  $Y = \{y\}$ . As an FSM the specification has a single state and three self-loops under labels: i1/o1, i2/o2, x/y. The procedure to compute the largest FSM solution is:

$$X = \overline{C \diamond \overline{S}}$$

complement spec\_sync.aut spec\_sync\_comp.aut product spec\_sync\_comp.aut ioStar.aut spec\_sync\_io.aut expansion E3,E4 spec\_sync\_io.aut spec\_sync\_io\_exp.aut expansion E0,E1 context\_sync.aut context\_sync\_exp.aut product context\_sync\_exp.aut spec\_sync\_io\_exp.aut product.aut restriction E0,E1,E3,E4 product.aut product\_res.aut complement product\_res.aut product\_comp.aut product product\_comp.aut uvStar.aut x.aut write\_para\_fsm x|u|y|v|E E0|E1,E4|E3 x.aut.aut x\_fsm.aut

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Automaton representing the largest FSM solution

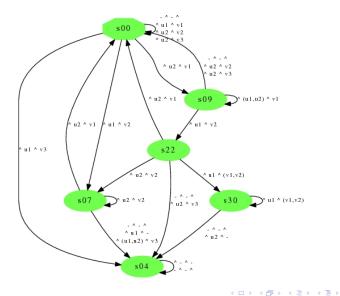


UNIVR

Synthesis by Solving Language Equations

53 / 58

### Largest FSM solution



э

- Introduction
- 2 Some previous work
- Composition operators
   Synchronous operators
   Interleaving parallel operators
- 4 Equations over languages
- 5 BALM-II
- 6 Examples
  - Example with finite automata
  - Example with FSMs

### Conclusions

### Conclusions and future work

#### Results

- Developed a general frame for unifying the synthesis of components given a specification and a context.
- BALM–II was tested successfully on many examples, some taken from problems of synthesis of protocol converters.

### Conclusions and future work

#### Results

- Developed a general frame for unifying the synthesis of components given a specification and a context.
- BALM–II was tested successfully on many examples, some taken from problems of synthesis of protocol converters.

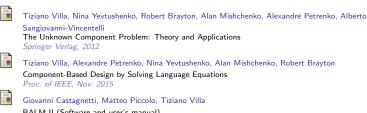
#### Future work

- Investigate the problem of extracting an "optimal solution" for synthesis/resynthesis of sequential logic.
- Extend the software to solve supervisory control problems with full or partial controllability and full or partial observability.

くほと くほと くほと

#### Conclusions

### References



BALM-II (Software and user's manual) http://esd.scienze.univr.it/index.php/it/balm-ii.html



Giovanni Castagnetti, Matteo Piccolo, Tiziano Villa, Nina Yevtushenko, Alan Mishchenko, Robert Brayton

BALM-II (Solving Parallel Equations with BALM-II) EECS Dept., UC Berkeley, Tech. Rep. UCB/EECS-2012-181, July 2012



Ratnesh Kumar, et al.

A Discrete Event Systems Approach for Protocol Conversion Discrete Event Dynamic Systems, 1997



Khaled El-Fakih, Nina Yevtushenko, et al.

Progressive Solutions to a Parallel Automata Equation Theoretical Computer Science, 2006



Roberto Passerone

Interface Specification and Converter Synthesis Embedded Systems Handbook, Aug 2005, 23:1-20

.∋⇒