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Introduction

The problem of synthesizing an unknown component

Problem: finding the unknown component

Design a component that combined with a known part of a system
(called the context or plant) conforms to a given specification.

≡

I1

I2

O1

O2

I1, I2 O1, O2

UV

MA

MC

MX

UNIVR Synthesis by Solving Language Equations 3 / 58



Introduction

The problem of synthesizing an unknown component

Problem: finding the unknown component

Design a component that combined with a known part of a system
(called the context or plant) conforms to a given specification.

≡

I1

I2

O1

O2

I1, I2 O1, O2

UV

MA

MC

MX

UNIVR Synthesis by Solving Language Equations 3 / 58



Introduction

How to formalize the problem

How to model the system and its components

Associate languages to systems and components: traces of events
over alphabets of internal and external signals.

How to model composition

Interleaving parallel composition (a.k.a.: parallel composition,
synchronous parallel composition, asynchronous composition)

Synchronous composition

How to model conformance

Language containment

Simulation/Bisimulation relation
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Introduction

Composition topologies
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(b) 2-way cascade topology
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(d) Rectification topology
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Introduction

The unknown component problem

Problem: finding the unknown component

Design a component that combined with a known part of a system
(called the context or plant) conforms to a given specification.

Solution: solving an equation over languages

Reduce the problem to solving abstract equations over languages
under synchronous and interleaving parallel composition.
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Some previous work

Series topology: input don’t care sequences
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Solved by Kim-Newborn
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Some previous work

WS1S and regular languages

Weak Second-Order Logic of 1 Successor (WS1S) is a logic
with the same expressive power as regular languages.

It is possible to represent in WS1S any regular language L by
encoding with a formula in WS1S the finite automaton A that
recognizes the regular language L.

Theorem (Thatcher-Wright, 1968)

L ⊆ ({0, 1}k)? is regular iff there exists a WS1S formula φ with
X1, . . . ,Xk as free variables and L(φ) = L.

The WS1S formalism allows to write down formulas that
express the permissible behaviours at a node of a network of
FSMs.
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Some previous work

Synthesis with WS1S

1-Way Cascade (a) - case (c)
φMA

∗
(I1,U) = (∀O2)[φMB (U,O2)→ φMC (I1,O2)].

The machine M∗A is the one produced by the construction
of Kim and Newborn.

1-Way Cascade (b) - case (c)
φMB

∗
(U,O2) = (∀I1)[φMA(I1,U)→ φMC (I1,O2)].

Supervisory Control - case (e)
φMB

∗
(I2,O1,V ) = φMA(V ,O1)→ φMC (I2,O1).

2-Way Cascade (a) - case (b)
φMA

∗
(I1,V ,U) = (∀O2)[φMB (U,V ,O2)→ φMC (I1,O2)].

2-Way Cascade (b) - case (b)
φMB

∗
(U,V ,O2) = (∀I1)[φMA(I1,V ,U)→ φMC (I1,O2)].

Rectification (a) - case (d)
φMB

∗
(U,V ) = (∀I1,O1)[φMA(I1,V ,U,O1)→ φMC (I1,O1)].

Rectification (b) - case (d)
φMA

∗
(I1,V ,U,O1) = φMB (U,V )→ φMC (I1,O1).
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Composition operators

Synchronous and interleaving parallel composition

Synchronous composition

Synchronous composition (•) corresponds to instantaneous
communication of systems.

Interleaving parallel composition

Interleaving parallel composition (�) corresponds to
asynchronous communication allowing arbitrary delay between
communication events. A slow environment is assumed, i.e., no
external input is applied to the composition until it produces an
external output to the previous external input.
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Composition operators Synchronous operators

Synchronous operators

Projection

Given a language L over alphabet X × V , consider the
homomorphism p : X × V → V ? defined as p((x , v)) = v , then
the language

L↓V = {p(α)|α ∈ L}
over alphabet V is the projection of language L to alphabet V , or
V -projection of L. By definition of substitution p(ε) = ε.
The projection of a language L over alphabet X × V to the
alphabet V is the set of words obtained from those in L by
replacing the symbols (x , v) by their second component v .
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Composition operators Synchronous operators

Synchronous operators - 2

Lifting

Given a language L over alphabet X and another alphabet V ,
consider the substitution l : X → 2(X×V )? defined as
l(x) = {(x , v)|v ∈ V }, then the language

L↑V = {l(α)|α ∈ L}

over alphabet X × V is the lifting of language L to alphabet V , or
V -lifting of L. By definition of substitution l(ε) = {ε}.
The lifting of language L over alphabet X to the alphabet V (V
disjoint from X ) is the set of words obtained from those in L by
replacing the symbols x ∈ X by the pairs (x , v) for all v ∈ V .
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Composition operators Synchronous operators

Synchronous operators - 3

Figure: AUT↓(IO)

Figure: AUT↑(VU)
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Composition operators Synchronous operators

Synchronous language composition

Synchronous composition

Given alphabets I ,U,O, language L1 over I × U and language L2

over U × O, the synchronous composition of languages L1 and
L2 is the language defined over I × O

L1 • L2 = [(L1)↑O ∩ (L2)↑I ]↓I×O .

Given two systems A and B with associated languages L(A) and
L(B) communicating internally by channel U and externally by
channels I and O, their synchronous composition is defined by the
operator of synchronous language composition.
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Composition operators Interleaving parallel operators

Interleaving parallel operators

Restriction

Given a language L over alphabet X ∪ V , consider the
homomorphism r : X ∪ V → V ? defined as

r(y) =

{
y if y ∈ V
ε if y ∈ X\V then the language

L⇓V = {r(α)|α ∈ L}

over alphabet V is the restriction of language L to alphabet V , or
V -restriction of L, i.e., words in L⇓V are obtained from those in L
by deleting all the symbols in X that are not in V . By definition of
substitution r(ε) = ε.
The restriction of language L over alphabet X ∪ V to the alphabet
V is the set of words obtained from those in L by deleting the
symbols in X that are not in V .
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Composition operators Interleaving parallel operators

Interleaving parallel operators - 2

Expansion

Given a language L over alphabet X and an alphabet V disjoint
from X , consider the mapping e : X → 2(X∪V )? defined as
e(x) = {αxβ|α, β ∈ (V \X )?}, then the language

L⇑V = {e(α)|α ∈ L}

over alphabet X ∪ V is the expansion of language L to alphabet
V , or V -expansion of L, i.e., words in L⇑V are obtained from those
in L by inserting anywhere in them words from (V \X )?. Notice
that e is not a substitution and that e(ε) = {α|α ∈ (V \X )?}.
The expansion of language L over alphabet X to the alphabet V
(V disjoint from X ) is the set of words obtained from those in L by
inserting anywhere in them any word from V ?.
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Composition operators Interleaving parallel operators

Interleving parallel operators - 3

Figure: AUT⇓(IO)

Figure: AUT⇑(UV )
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Composition operators Interleaving parallel operators

Interleaving parallel language composition

Interleaving parallel composition

Given alphabets I ,U,O, language L1 over I ∪ U and language L2

over U ∪ O, the interleaving parallel composition of languages
L1 and L2 is the language defined over I ∪ O

L1 � L2 = [(L1)⇑O ∩ (L2)⇑I ]⇓I×O .

Given two systems A and B with associated languages L(A) and
L(B) communicating internally by channel U and externally by
channels I and O, their interleaving parallel composition is defined
by the operator of interleaving parallel language composition.
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Equations over languages

Abstract composition operators

Abstract composition

Given the disjoint alphabets I ,U,O, a language L1 over alphabet
I ◦ U and a language L2 over alphabet U ◦ O, let the following
symbols represent operators defined over alphabets and languages:

◦ denotes an operator between alphabets;

� denotes a composition operator between languages,
defined as

L1 �I◦O L2 = [(L1)>O ∩ (L2)>I ]⊥I◦O

where > and ⊥ denote language substitutions operators in
suffix notation.
E.g., > is ↑, ⊥ is ↓, and so � denotes the synchronous
composition operator •, and ◦ denotes × (or > is ⇑, ⊥ is ⇓,
and so � denotes the parallel composition operator � and ◦
denotes ∪).
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Equations over languages

Abstract equations over languages

Abstract equations

Given the disjoint alphabets I ,U,O, a language A over alphabet
I ◦ U and a language C over alphabet I ◦ O, we define the
language inequation

AI◦U �I◦O XU◦O ⊆ CI◦O , or A�I◦O X ⊆ C ,

and the language equation

AI◦U �I◦O XU◦O = CI◦O , or A�I◦O X = C ,

with respect to the unkown language X over alphabet U ◦ O.
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Equations over languages

Solutions of abstract equations over languages

Abstract equations

Given the disjoint alphabets I ,U,O, a language A over alphabet
I ◦ U and a language C over alphabet I ◦ O, language B over
alphabet U ◦ O is called a solution of the inequation
A�I◦O X ⊆ C iff A�I◦O B ⊆ C .
A solution is called the largest solution if it contains any other
solution.
B = ∅ is the trivial solution.
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Equations over languages

Closed-form solution of abstract inequations over languages

Theorem

If the substitution operators > and ⊥ are such that

H1 : Given disjoint alphabets Z ,Y and language L over Z ,
(L>Y )⊥Z = L

H2 : Given disjoint alphabets Z ,Y and languages L1, L2

over Y ◦ Z , if L1 = (L1⊥Z )>Y or L2 = (L2⊥Z )>Y
then (L1 ∩ L2)⊥Z = L1 ⊥Z ∩ L2 ⊥Z

H3 : Given disjoint alphabets Z ,Y and language L over
Y ◦ Z , L⊥Z = ∅ ⇔ L = ∅

then the largest language solution of the inequation A� X ⊆ C
is

S = A� C .

S contains every language that is a solution (also the empty one).
Any language contained in S is a solution of the language
inequation.
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Equations over languages

Closed-form solution of abstract equations over languages

Corollary

If S � A� C = C , then S is the largest solution of the language
equation A� X = C . A subset of S may not be a solution of the
language equation.

If S � A� C ⊂ C , then the language equation is unsolvable and

the language D = S � A� C is the largest subset of C such that
the language equation A� X = D is solvable.
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Equations over languages

Concrete equations over languages (� composition)

Given the alphabets I , I ′,V ,U,O,O ′, a language A over alphabet
I ∪ V ∪ U ∪ O, and a language C over alphabet I ∪ I ′ ∪ O ∪ O ′,
consider the language inequality (equation)

A � X ⊆ C (A � X = C )

The language B over alphabet I ′ ∪ U ∪ V ∪O ′ is called a solution
of the inequality (equation) A � X ⊆ C (A � X = C ) iff A � B ⊆ C
(A � B = C ). The largest language solution is computed by

X = A � C .

UV

O

O′I ′

I
A

X

C
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Equations over languages

Specializing the solutions

Restricted solutions

One may restrict the solutions to those that satisfy a required
property (prefix-closed, progressive, compositionally progressive
etc.). Algorithms are available for regular languages.

Optimal solutions

One may extract a particular solution that optimizes a given cost
function (e.g., the number of states of an automaton representing
it, size of logical implementation etc.). It is mostly an open
problem.
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Equations over languages

Domains of application

This approach can be applied to many fields:

conversion between mismatching protocols;

supervisory control with full controllability and observability;

testing modules of a discrete event system;

design of winning stategies for logic games;

logic circuit optimization;

etc.
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Equations over languages

How to solve effectively the language equations

Computing the closed-form solution

Automata are operational counterpars of languages. The
closed-form largest solution can be computed if the operations
appearing in it can be perfomed on the related automata. Special
attention is required by the complementation operator.

Classes of languages equations

Most of the work done refers to regular languages to which
correspond finite automata and finite state machines.
Language equations for special classes of Büchi automata and
Petri nets have been studied too.
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Equations over languages

Representations of regular languages

Finite automata

Finite automata are the most natural representation for regular
languages.

FSMs

Many problems derived from practical industrial applications are
described as FSMs.

Conversion FSM ⇐⇒ automaton

Using a specialized procedure it’s possible to convert a FSM into
an automaton and vice versa
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Equations over languages

Conversion FSM → automaton wrt parallel composition

For a language over I ∪ O, the automaton is obtained from the
original FSM, by replacing each edge (i , s, s ′, o) by the pair of
edges (i , s, (s, i)) and (o, (s, i), s ′), where (s, i) is a new node
(non-accepting state). All original states are made accepting.

Figure: Transformation from FSM to automaton.
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BALM–II

Berkeley Automata and Language Manipulation (BALM)

BALM

BALM was developed at U.C. Berkeley as a branch of the MVSIS
project at the Center for Electronic System Design, Brayton’s
group, main architect Alan Mishchenko.

Features of BALM

The BALM package aims at providing an experimental environment
for efficient manipulation of finite automata in various application
domains. With BALM it is possible to perform classic operations
over automata and efficiently solve synchronous equations.
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BALM–II

Berkeley Automata and Language Manipulation (BALM)

Main features

The package can perform classical operations like minimization,
complementation, determinization, product, etc. on automata
described in .aut format.

Graphical representation

BALM can show results converting the .aut files into .ps using
graphviz libraries. The initial states are represented with octagons,
while the other states are elliptical. Colours are used to define the
acceptance/non acceptance of a state, respectively green and red.
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BALM–II

BALM–II

BALM

BALM–II is an extension of BALM developed at the University of
Verona.

Features of BALM–II

BALM–II is able to solve also parallel equations. In order to solve
them, some operators like expansion and restriction were
introduced, together with the procedure to derive an automaton
starting from a FSM, and to derive an FSM from an automaton
solution.
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BALM–II

Some commands in BALM / BALM–II

complement

product

expansion

restriction

support

chan_sync

read_para_fsm

write_para_fsm

In BALM–II there is a topological notion of channel that is a
connection between terminals; we may associate one or more
discrete variables to a given channel. To operate on automata,
they must be defined over the same variables with the same order:
this is achieved by using support and chan_sync.
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Examples Example with finite automata

Solution of an equation over finite automata

As an example we consider the problem, taken from Kumar et al.
(DEDS, 1997), of designing a protocol converter to interface an
alternating-bit (AB) sender and a non-sequenced (NS) receiver.

The component of the system are an AB protocol sender (PS), an
AB protocol channel (PC ) and a NS protocol receiver (PR).
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Examples Example with finite automata

Automata representation of the components

Figure: (a) AB sender; (b) AB channel; (c) NS receiver; (d) Specification.
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Examples Example with finite automata

Solution of the example

In order to use the procedure described above, it is necessary first
to compute the composition of the components that represent the
plant.

The solution is found by computing the formula:

X = PS � PC � PR � S
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Examples Example with finite automata

Solving procedure in BALM–II

complement spec.aut spec_comp.aut

expansion E4,E5,E6,E7 spec_comp.aut spec_comp_exp.aut

product fixed.aut spec_comp_exp.aut product.aut

support I,O,AX,DX,D,A,E(8) product.aut product_supp.aut

restriction E4,E5,E6,E7 product_supp.aut product_res.aut

support A,DX,AX,D,E(8) product_res.aut product_supp.aut

complement product_supp.aut x.aut
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Examples Example with finite automata

Graphical representation of the largest automaton solution
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Examples Example with FSMs

Solution of an equation over FSMs

As a second example we consider a problem over FSMs taken from
El-Fakih et al. (TCS, 2006). This is the topology:
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Examples Example with FSMs

Plant and specification as FSMs

Figure: Plant FSM (left) and specification FSM (right)
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Automaton representing the FSM language of the plant
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Examples Example with FSMs

Automaton representing the FSM language of the spec.

Notice that the specification has input variables I = {i1, i2},
X = {x} and output variables O = {o1, o2}, Y = {y}.
As an FSM the specification has a single state and three self-loops
under labels: i1/o1, i2/o2, x/y .
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Solving procedure in BALM–II

The procedure to compute the largest FSM solution is:

X = C � S

complement spec_sync.aut spec_sync_comp.aut

product spec_sync_comp.aut ioStar.aut spec_sync_io.aut

expansion E3,E4 spec_sync_io.aut spec_sync_io_exp.aut

expansion E0,E1 context_sync.aut context_sync_exp.aut

product context_sync_exp.aut spec_sync_io_exp.aut product.aut

restriction E0,E1,E3,E4 product.aut product_res.aut

complement product_res.aut product_comp.aut

product product_comp.aut uvStar.aut x.aut

write_para_fsm x|u|y|v|E E0|E1,E4|E3 x.aut.aut x_fsm.aut
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Automaton representing the largest FSM solution
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Largest FSM solution
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Conclusions and future work

Results

Developed a general frame for unifying the synthesis of
components given a specification and a context.

BALM–II was tested successfully on many examples, some
taken from problems of synthesis of protocol converters.

Future work

Investigate the problem of extracting an ”optimal solution”
for synthesis/resynthesis of sequential logic.

Extend the software to solve supervisory control problems with
full or partial controllability and full or partial observability.
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